
Poet Admits // Mute Cypher: Beam Search to find Mutually Enciphering
Poetic Texts

Cole Peterson and Alona Fyshe
University of Victoria

cpeterso@uvic.ca, afyshe@uvic.ca

Abstract

The Xenotext Experiment implants poetry into
an extremophile’s DNA, and uses that DNA
to generate new poetry in a protein form.
The molecular machinery of life requires that
these two poems encipher each other un-
der a symmetric substitution cipher. We
search for ciphers which permit writing under
the Xenotext constraints, incorporating ideas
from cipher-cracking algorithms, and using
n-gram data to assess a cipher’s “writabil-
ity”. Our algorithm, Beam Verse, is a beam
search which uses new heuristics to navigate
the cipher-space. We find thousands of ci-
phers which score higher than successful ci-
phers used to write Xenotext constrained texts.

1 Introduction

For over a decade, poet Christian Bök has been
working on The Xenotext (Bök, 2008), a literary ex-
periment which aims to insert poetry into the DNA
of an extremophile organism. In contrast to pop-
ular modern data storage mediums like paper and
hard disks, DNA is more robust to accidents, and
requires minimal maintenance to last hundreds or
even thousands of years (Cox, 2001). Many groups
are actively pursuing efficient and stable ways to use
DNA to encode information (Shimanovsky et al.,
2002; Goldman et al., 2013). With his project, Bök
aims to leave a lasting cultural contribution inside
of an organism, which, as a result of DNA’s durabil-
ity and self-replicating properties, could conceivably
survive longer than all other existing works of art.

Furthermore, Bök aims to craft his poem so the
protein it instructs the cell to produce is yet an-

other English poem. In a sense, Bök not only turns
a microbe into a genetic book, he also engineers
the microbe to be, in a sense, a poet. The organ-
ism’s molecular machinery powers this translation
between the two texts, which, at a high level, is a
symmetric substitution cipher between the letters,
and is described in more detail in Section 2. The
two poems (the poet’s and the organism’s) must both
play by the rules we refer to as the Xenotext Con-
straints:

• Each text is valid natural language.

• The substitution cipher function applied to one
text, results in the other text, and vice versa. In
other words, the cipher function must be sym-
metric.

• Whitespace characters (space, new line) enci-
pher themselves, and are the only characters al-
lowed identity mappings.

After four years of work, Bök successfully wrote
two English poems which satisfied the Xenotext
constraints1, becoming the first person to do so. The
first challenge was finding a cipher which allows
for two valid English texts to be written. Finding
“writable” ciphers is difficult and is the focus of this
paper.

We present Beam Verse, a language-agnostic al-
gorithm driven by the target language’s n-gram data,
that searches for “writable” ciphers, and suggests
words and phrases which can be written under them.

1The two poems used the cipher (abcdefghijlmqtvukyspnoxrwz)

We do not concern ourselves with the full biochem-
ical constraints of The Xenotext (eg. the actual im-
pact of the protein and the cell’s reaction to it, or
its viability after folding) and instead only consider
the Xenotext constraints listed above. This problem
sits at the intersection of natural language process-
ing and cryptography, and is a prerequisite to the
genetic engineering required to fully realize a liv-
ing xenotext. Our algorithm uncovers new ciphers
which make satisfying the Xenotext constraints in
English possible, and makes it easier for a poet of
any language to investigate the feasibility of writing
two mutually enciphering texts in their own tongue.

2 Genetic Background

DNA provides instructions to a living cell to pro-
duce a protein. DNA has a double helix structure
(reminiscent of a twisted ladder) and is made up of
four nucleotides: adenine, cytosine, guanine, and
thymine, commonly abbreviated as A, T, C, and G.
Each nucleotide always appears paired with another
across the “rung” of the ladder, A with T, C with G,
and vice versa. To transfer the data in the DNA to
the protein-producing ribosome, the double helix is
“unzipped”, separating the ladder at the rungs, and a
copy of the exposed DNA sequence called an mRNA
transcript is synthesized, pairing in the same way
the DNA did, with the exception that adenine in the
DNA strand pairs with uracil (U) in the mRNA. The
ribosome reads the mRNA as instructions to produce
a specific protein. A protein is a sequence of amino
acids and each triplet of nucleotides in the mRNA
(called a codon) represents one of the twenty amino
acids (see Table 2) (Campbell and Reece, 2008).

We can write in the DNA of an organism by hav-
ing a codon represent a letter. When this sequence
of codons (the full poem) is read by the organism, it
then writes a sequence of amino acids, each of which
represent a letter, in reply2. The letters in each poem
have a bijective relationship determined by the bio-
chemical processes that link them. For example, as
shown in Table 2, the letters E and T are mutually

2This makes the writing lipogrammatic, as there are only 20
amino acids, and one of them (Serine) must be used as the space
character. Serine is used for the space because it is the only
amino acid to encipher itself, as both codons AGT and TCA
produce it, mirroring the constraint that the space is mapped to
itself in our ciphers.

linked, as wherever the poet uses the letter E, the cell
uses the letter T, and vice versa. If the poet was to
write “mute” instead of “poet”, the cell would write
“poet” instead of “mute”.

Poet’s Letter P O E T
DNA Codon AAC GAG CCG GGC

mRNA Codon UUG CUC GGC CCG

Amino Acid phenylalanine leucine glycine proline

Cell’s Letter M U T E
Table 1: Sample translation from text through DNA to new text

This view of DNA is extremely simplistic, and
serves only to motivate and provide context for the
rest of this paper. When using a codon to represent
a poet’s letter and an amino acid to represent one
of the organism’s letters, many complexities arise
which add further constraints to the text, which we
ignore in the remainder of the paper. When actually
inserting his poetry into a cell, Bök struggled to get
the organism to express the correct protein, because
he failed to account for the full complexity of the
cell and caused the cell to “censor” itself (Wershler,
2012). However, we consider these additional con-
straints to be future work.

3 Substitution Ciphers

Substitution ciphers are among the earliest known
forms of cryptography, having existed since at least
the days of Caesar (Sinkov, 1966). They work by
replacing one letter in the plaintext with another to
form the ciphertext. However, they are never used
in modern cryptography because, despite a large
keyspace, substitution ciphers do not change the
letter frequency between plaintext and ciphertext.
When properties of the plaintext are known (like the
language it is written in), letter or word frequency
data from that language can be used to quickly crack
the cipher and uncover the key.

Every word has a deterministic encryption under
a cipher. The encrypted word could be nonsense, or
it could be another word. The word “poet”, for ex-
ample, can encrypt to many other words, including
“mute”. The “poet↔mute” word-pair forms what
we call a partial cipher, and notate as (

poe
mut). We

say this partial cipher has a cardinality of three, as
it defines three letter pairings. A full cipher in a
26-letter language has a cardinality of 13. We also
refer to (

poe
mut) as a primary cipher, because it is the

lowest cardinality cipher to contain the word-pairing
“poet↔mute”.

As no characters except whitespace are allowed
identity mappings a word-pair like “eat↔cat” is
not valid, as both a and t would have to map to
them selves. The symmetric Xenotext constraint
prohibits “admits” from pairing with “cipher”, as
the letter i would require a mapping to both d and
h. However, “admits” can pair with the alterna-
tive spelling “cypher”, forming the primary cipher
(admitscypher). We can combine this cipher with (

poe
mut), as

none of the letter pairs conflict with each other – they
are compatible with each other. Together, they form
(
poeadis
mutcyhr). As the letter-pairs in (

poe
mut) and (admitscypher)

are subsets of the letter-pairs in (
poeadis
mutcyhr), we call

(
poe
mut) and (admitscypher) subciphers of (poeadismutcyhr), and say

that (poeadismutcyhr) extends (
poe
mut) and (admitscypher). For any

two ciphers φ1 and φ2, we use the notation φ1 ⊂ φ2
to denote that φ1 is a subcipher of φ2.

If we applied (
poeadis
mutcyhr) to “Poet Admits” (the

first part of this paper’s title), it would result “Mute
Cypher” (the second part of the paper’s title). The ti-
tle refers to the difficulty of writing under the Xeno-
text constraint, as it is hard to find a cipher where
writing is possible, most of the ciphers are mute.
Once all of the possible word pairs of a target lan-
guage have been discovered (Section 7) the chal-
lenge becomes navigating the tradeoffs of including
a letter pair, as each letter pair eliminates the pos-
sibility of using some word-pairs, while including
other word-pairs.

If a language has an odd number of characters a
symmetric substitution cipher is not possible using
every letter. We must decide which letter to leave
out of our texts. This is accomplished by inserting a
null letter (which appears nowhere in the language)
into our letter set, thus giving the language an even
number of characters. At the conclusion of Beam
Verse the letter paired with null is the character to
leave out.

4 Scoring a Cipher’s “Writability”

When scoring a cipher, an important consideration
is what makes one cipher more “writable” than an-
other. We might score a cipher on the number of
valid words under it, as having more words at your
disposal makes it easier to write, but this is not nec-
essarily so if all the words are all rare and useless.
To combat this, we weight words based upon their
frequency in language, so that better, more frequent
words contribute more to a ciphers overall score.
This values highly frequent and syntactically impor-
tant words, like “the” or “and”, while also allow-
ing a large number of infrequent words to also con-
tribute significantly to the score. However, a word’s
usefulness when writing mutually enciphering texts
is explicitly tied to its sister word under the cipher.
“The” looses its usefulness if every time it is used
in one poem, a less frequent word like “nag’ must
be used in the other. We propose that since a word
pair is only as good as its weakest word, that ciphers
be scored by taking the sum of all available word
pairs, counting the minimum frequency of the two
words. This means that the word pair “the↔nag”
would count the frequency of “nag”.

Multiple different word pairings can form the
same primary cipher. For example, (thea) is formed
by both “the↔eat” and “he↔at”, and would count
the score of both word-pairs. As there are always
less or equal primary ciphers than word-pairs, it is
more memory efficient to store the score of all the
primary ciphers than to store the scores of all the
word-pairs. We count the score of a primary cipher
φp towards a full cipher φf if it is a subcipher of φf .
Formally, if P is the set of all primary ciphers and
φp ∈ P , the score of φf is

∑
φp⊂φf score(φp).

Alternatively, this could be expressed as a dot
product between a vector where every element is the
score of a primary (the score vector, s), and a vec-
tor indicating whether a primary cipher is a subci-
pher (the heuristic vector, h), as seen in equation 1.
In section 8 we show how h can be calculated ef-
ficiently, and also how it can be use to provide an
upper and lower bound the score of a full cipher ex-
tended from a partial cipher.

score = s · h (1)

The concept of a word-pair can easily be extended

to include longer word-level n-grams. Like words,
every n-gram either enciphers to nonsense or has a
sister n-gram it is locked to under a cipher. All n-
gram pairs also have an associated frequency in the
language, and so can contribute to the score of a ci-
pher in the same way as single words do: by the
minimum of the two n-gram’s frequency counting
as the weight of the pair. Using n-grams also indi-
rectly captures some syntactic structure, and allows
for generation of sample phrase and sentence gener-
ation from the cipher by chaining together n-grams.
These small phrases can be used to quickly proto-
type poetry. For our word list and frequency data,
we use Google’s n-grams (Michel et al., 2011), but
any dataset could be used, and would give different
ciphers depending on the data’s source.

5 Graphical and Combinatoric
Representation

There are 7,905,853,580,625 possible symmetric
substitution ciphers in a 26 letter language like En-
glish. Even with the efficient means of scoring ci-
phers shown in section 8 (which can calculate a full
cipher’s score in ∼ 300 microseconds) the brute
force solution would take over 75 years of comput-
ing time. To avoid this expensive full calculation,
we formulate the problem as a graph of partial ci-
phers and use beam search to navigate the graph to
high valued full solutions. We regret that the small-
est non-trivial graph (of a 6 letter language) is too
large to be included here; it requires 75 nodes ar-
ranged in three layers which takes up an entire page,
but it can be found on our website3. An incomplete
graph is shown in Figure 1. As we search the cipher
space we trace edges up through the graph to a full
cipher solution.

The size of the mth layer of a n letter language
is defined by equations 2-4. The counts for a 26-
letter language and a derivation of this equation can
be seen on our website.

f(m, 0) = 1 (2)

f(1, n) = n× (n− 1)/2 (3)

f(m,n) = f(m− 1, n)×
f(1, n− 2× (m− 1))/m (4)

3http://www.langlearnlab.cs.uvic.ca/beamverse

(astzonfj)

(astonf) (aszonj)

(atof) (stnf) (ason) (azoj) (sznj)(isan)

(tf) (ao) (sn) (zj)(ia)

[1,1,1][1,0,0] [0,1,1] [1,1,1] [1,1,1]

Figure 1: An incomplete cipher-graph, showing some of the

partial ciphers which descend from (astzonfj). Three primary ci-

phers are shown in boxes, and are the same example primary

ciphers used in Section 8. Compatibility vectors (discussed in

Section 8.1) are shown for every letter-pair. Edges in this graph

represent a difference of a letter-pair between ciphers. Each car-

dinality of partial cipher has a layer in the graph, which is our

beam in the search.

6 Beam Search

A beam search algorithm does not require us to store
all of this graph in memory, as we only examine
a subset of the ciphers anticipated to be the best.
Beam search works by enumerating all possibilities
for one step of a solution (one layer of the cipher
graph), sorting those options by a heuristic, keep-
ing the best n partial solutions, and pruning the rest
(Edelkamp and Schroedl, 2011). We fully expand
one step further on the best n partial solutions, re-
peating the pruning and expanding process until a
set of full solutions are reached. Beam search can
effectively crack substitution ciphers, as shown by
Nuhn et al. (2013).

A static beam size could be used (keeping the best
thousand partial ciphers at each step, for example),
however, the lower cardinality the partial, the more
possibilities it generates. Every cardinality-1 partial
cipher generates 276 possible cardinality-2 partial
ciphers, whereas a cardinality-12 partial cipher only
generates one possible full cipher (as there are only
two unpaired letters remaining, therefore they must
pair together). A constant beam size will limit the
algorithm’s performance in later stages of the search

if this is not accounted for.
We can rearrange our recursive definition in Equa-

tions 2 to 4 to determine the beam size which will
generate exactly as many partial ciphers as we can
hold in memory. If we want to generateB ciphers in
an n letter language, and are at layer m, we should
prune the beam to b(m,n). This can be found by
replacing replacing f(m,n) for B, and f(m− 1, n)
for b(m,n) in equation 4 and rearranging to produce
equation 5, removingm from equation 4 because we
cannot assume duplicates will be generated.

b(m,n) =
B

f(1, n− 2× (m− 1))
(5)

7 Generating Primary Ciphers

In order to generate the primary ciphers, we must
find all words which can encipher with each other,
and record their score. Rather than checking every
word against every other word, many useless checks
can be avoided by hashing each word or n-gram ac-
cording to the pattern of its letters, a concept which
Hauer et al. (2014) called “pattern-equivalence” and
used to crack substitution ciphers. We use a key
which represents each letter in the n-gram with a
number or symbol, ordered by first occurrence of
the letter, while maintaining whitespace (eg. “and
we are”→ “123 45 165”). Another trigram like “his
or her” would also generate the same key, and so the
two trigrams would be checked against each other to
see if they validly encipher, which they do, forming
a primary partial cipher (andwrhisoe) .

A match on the hash key does not guarantee that
the words form a valid pairing. Many words which
share a key form invalid word-pairings due to the
symmetric or identity restrictions of the Xenotext
constraint (eg. “cat↔eat”, which share the key
“123”, or “admits↔cipher”, which share the key
“123456” are both invalid word-pairings). The score
of a primary cipher is the sum of the score of all
word-pairs which generate the primary. The algo-
rithm is shown in Algorithm 1.

8 Beam Search Heuristics

Recall from Section 3 that, in a full cipher, all let-
ters have a defined mapping (the cipher has a car-
dinality of 13), while in a partial cipher some let-
ters have undefined defined mappings, and that a pri-

Algorithm 1 Generating Primary Ciphers
1: function GENERATE PRIMARIES(ngrams)
2: for word1 ← ngrams do
3: key ← pattern(word1)
4: for word2 ← patternDict[key] do
5: if mutually-encipher(word,word2) then
6: primaries[encipher(word1, word2)] +=

minScore(word1, word2)
7: end if
8: end for
9: patternDict[key].add(word1)

10: end for
11: return primaries
12: end function

mary cipher is the minimal cardinality partial cipher
to contain a particular word-pair and is the build-
ing block of a cipher’s score. We explore three dif-
ferent heuristics which calculate the true score for
full ciphers, and estimate the score of full ciphers
extended from a partial cipher by forming an upper
and lower bound. All heuristics produce a vector h,
which forms the score for a cipher when dotted with
the score vector s (Equation 1). For full ciphers this
vector will be the same regardless of the heuristic
used, and the score from Equation 1 will be the true
score of the full cipher, whereas different heuristics
will give different values for a partial cipher, and
thus guide Beam Verse in different directions. We
implement these heuristics using bitwise operations,
making them both memory and CPU efficient.

To demonstrate the calculation of the heuristics,
we use the following primary ciphers as a running
example, (isan) (score: 100), (atof) (score: 82), and
(onas) (score: 76), which are the same primary ci-
phers as are shown in Figure 1. These three pri-
maries would form the score vector, which is shared
amongst all heuristics, is s = [100, 82, 76]. Thus
P = {(isan), (atof), (onas)}, and |P | = 3. We show the
heuristic calculation for all three heuristics on the
partial cipher (aszonj).

8.1 Upper Bound: Compatibility Vector

Recall that two ciphers are compatible if they have
no conflicting letter-pairs. If two ciphers are com-
patible, it is possible to combine them. Every cipher
φ has a vector representing compatibility with the

primary ciphers P . This vector is |P | long, and con-
tains a 1 in the ith element if φ is compatible with
the ith primary cipher, and a 0 if it is not.

We use a superscript c on a cipher to notate its
compatibility vector. Here are the compatibility vec-
tors for four letter-pairs, using the primary ciphers
outlined above, and are shown in Figure 1:

(ia)
c = [1, 0, 0], (sn)

c = [1, 1, 1],

(ao)
c = [0, 1, 1], (zj)

c = [1, 1, 1].

This is an upper-bound because the primary ci-
phers compatible with φmay not be compatible with
each other. For example, the null cipher, which has
no letter pairings, is compatible with all primary
ciphers, but no full cipher contains all primaries.
When we combine two ciphers φ1 and φ2, which
have compatibility vectors φc1 and φc2, the resulting
cipher φ3 has a compatibility vector φc3 = φc1 ∧ φc2,
where ∧ is the bitwise AND operation. We calculate
the compatibility vector for every letter-pair, and can
combine those vectors to determine the compatibil-
ity vector for any cipher. The heuristic’s score for
(aszonj) follows.

h = (aszonj)
c = (ao)

c ∧ (sn)
c ∧ (zj)

c = [0, 1, 1]

score(aszonj) = 100 · 0 + 82 · 1 + 76 · 1 = 158

8.2 Lower Bound: Guarantee Vector

We can calculate another vector, g for every cipher
φ which represents whether each primary cipher is
a subcipher of φ. This forms a lower bound guar-
antee because any cipher which extends from φ will
also contain the primary ciphers in g, plus poten-
tially more. The null cipher in this case would have
a heuristic vector g of all zeros, as it does not con-
tain any of the primary ciphers. Likewise, in this P ,
all of the individual letter pairs ((ao), (

s
n), (

z
j)) would

have a heuristic vector of all zeros, as all of the pri-
maries require at least two letter-pairs.

Efficiently implementing this heuristic is slightly
more challenging than the compatibility heuristic.
Our method, which uses bitwise operations and is
cacheable like the compatibility vector. Using this
heuristic, g of (aszonj) is [0, 0, 1], as (isan) 6⊂ (aszonj),
(atof) 6⊂ (aszonj), and (ason) ⊂ (aszonj).

This heuristic therefore scores (aszonj) as follows:

score(aszonj) = 100 · 0 + 82 · 0 + 76 · 1 = 76

8.3 Middle Ground: Medium Vector

Both of the two aforementioned heuristics have
weaknesses. The optimistic, max heuristic does not
differentiate between a primary cipher it already has
and one that it potentially has, and the conservative
min heuristic is greedy and short-sighted. Our third
heuristic incorporates elements from the first two,
to ideally form a measure that is neither overly op-
timistic, or overly short-sighted. Unlike the lower
bound heuristic in Section 8.2, which requires all let-
ter pairings to count a primary cipher, this medium
heuristic counts some of the primary cipher’s score
if some of the letter-pairs are present. For example,
if a partial cipher has 3/4 of the required letter pair-
ings for a primary, it would count 75% of the score.

For example, (aszonj) has one of the two letter pair-
ings of the first primary, (isan); one of the two let-
ter pairings of the second primary, (atof); and two
of the two letter pairings of the third primary, (onas).
We represent this as [0.5,0.5,1]. However, we know
from Section 8.2 that the first primary is incompat-
ible with (aszonj), and so we do not count its score.
That makes the heuristic vector h = [0, 0.5, 1], and
score(aszonj) = 100 · 0 + 82 · .5 + 76 · 1 = 117.

We have now evaluated the same cipher using
three different heuristics, all which produce a differ-
ent score. These scores are guaranteed to converge
to the same value at the full cipher.

8.4 Speed improvements

Table 8.4 shows the massive performance gains of
the heuristics, which are over 3000 times faster than
the simplistic means of scoring by iterating over ev-
ery word and checking if it enciphers to anything
useful.

9 Related Work

Nuhn et al. (2013) use a beam search algorithm to
crack substitution ciphers. Our work differs from
their’s in several key ways: in Nuhn et al. (2013)
there are two distinct symbol spaces, that of the ci-
phertext and that of the plaintext and so there is
no concept of symmetry. Each step of Nuhn et
al.’s beam search explores pairing a ciphertext char-
acter with a plaintext character, and decides upon
the “extension-order” to pair the ciphertext letters,
whereas each step of our search pairs two characters

Heuristic Time Memory
word 1× 106µs all words

+1int/word
med 3× 103µs n bits/primary
8.3 + 1 int/primary
min 2× 103µs n bits/primary
8.2 + 1 int/primary
max 3× 102µs 1 bit/primary
8.1 + 1 int/primary

Table 2: Time to score a cipher using different means, and

each mean’s memory requirements. The word method stores the

strings of all words and enciphers them and checks if they are

valid words. It will produce the same value as the min heuristic.

together. As such, we make 13 decisions, not 26.
Additionally, the search space of the non-

symmetric and symmetric ciphers are characteristi-
cally different. If the “extension-order” is predeter-
mined as in Nuhn et al.’s work, there is only one
path from the bottom of the graph to a full solution.
In contrast, our graph has 13! different paths to any
full solution, as all the permutations of the 13 differ-
ent letter pairs are valid paths. On the one hand, this
highly connected property of the graph means that
we can prune our beam to a smaller size, as failing
to expand a partial cipher does not eliminate it from
appearing as a subcipher in a future solution like it
does for Nuhn et al..

However, the connectedness of our cipher graph
does present new challenges. As the Xenotext con-
straints are not satisfied by one cipher, we want
to maximize the number of different solutions pre-
sented to the writer which each allow for unique ex-
pressive potential. We observe, however, that the
connectedness property results in a final beam which
is smaller and less diverse than would be anticipated.
This is caused by multiple partial ciphers in a beam
sharing the same “propensity” to become an identi-
cal full cipher. We solve this by enforcing that every
partial cipher in the beam be incompatible with ev-
ery other, thereby guaranteeing that no two partial
ciphers can share the same “propensity”, and that all
possibilities generated from them in all future layers
will be unique. As there are many (O(n2)) compat-
ibility comparisons to be made at every beam, we
limit only enforce compatibility for the first thou-
sand ciphers in the beam.

Our scoring function is also entirely different
from what would be used to crack a substitution ci-
pher. Unlike Beam Verse, cracking software is tied
to a ciphertext, and typically uses character-level n-
gram data to calculate the probability that a deci-
pherment is valid. Beam Verse, on the other hand,
uses word-level n-grams as the basis of scoring, and
is not tied to any given text, but suggests fragments
of text which satisfy the Xenotext constraint.

10 Results

The raw score of a cipher changes according to the
dataset, and so we report the score divided by high-
est scored cipher across all of the heuristics. Ta-
ble 10 shows results using unigrams, while Table 10
shows results for primary ciphers generated from bi-
grams.

Heuristic High Low End Beam Size
max 0.74 0.53 12160
min 0.98 0.97 4223
med 0.93 0.73 13043

max incomp 0.71 0.59 12160
min incomp 1.00 0.97 4181
med incomp 0.85 0.74 13043

Bök 0.39

Table 3: Normalized scores for three different heuristics on

highest 216 unigram primary ciphers, and a variable beam aim-

ing for 215 ciphers. “Incomp” means that we enforce that all

partial ciphers in the beam be incompatible with each other. The

low value is the normalized score of the index of the shortest

end beam. This is a better comparison that the last cipher in the

beam, as the length of the beams is variable across heuristics.

Heuristic High Low End Beam Size
max 0.81 0.73 9631
min 1.00 0.94 5777
med 0.97 0.88 13291

max incomp 0.81 0.73 9631
min incomp 0.97 0.88 13301
med incomp 0.97 0.84 13291

Bök 0.23

Table 4: Normalized scores for different heuristics on highest

220 bigram primary ciphers, and a variable beam aiming for

215 ciphers.

We note that all ciphers we generate, regardless

of heuristic, score higher than the cipher Bök used
to write his poems. This suggests that there are
many ciphers other than Bök’s which can be used
to write Xenotext constrained poetry. Poems writ-
ten using ciphers generated from Beam Verse can
be found on our website. However, attempting to
write with some high-scoring ciphers has revealed
that our scoring metric may be only loosely cor-
related with the true “writability”, as some ciphers
which score higher that Bök’s we find more difficult
to write with.

Bök’s cipher also scores relatively worse than the
top ciphers using a bigram model (Table 10). Many
of the bigrams Bök uses in his poems are not fre-
quent enough to be in the Google bigrams. Anecdo-
tally, we find ciphers generated using bigram data to
be more writable, as bigram models begin to capture
syntactic structure of the language.

Enforcing that each cipher in the beam be in-
compatible with every other showed minimal gains
with some heuristics and minimal losses in others.
It does, however, guarantee that more ciphers will
be generated. Enforcing incompatibility is probably
not worth the processing time if memory permits in-
creasing the size of the beam instead.

The top scoring cipher4 according to the unigram
model performs similarly to the Bök cipher when
scored against the bigram model, accumulating only
24% of the points the highest scoring bigram cipher
does. The top bigram cipher5 scores 68% of the top
unigram cipher’s score when using unigram scoring,
not as drastic of a difference, but still low enough
to be pruned by Beam Verse and not be discovered.
The discrepancy in scores between models suggests
that “writable” ciphers are excluded from our final
results, and also encourages running Beam Verse
on additional datasets to find new ciphers. A score
which incorporates elements from multiple models
of language might be explored, searching for ciphers
which perform well across all datasets.

11 Further Work

Work in Kao (2011) sets out to quantify good poetic
style and techniques. We note that some poetic tech-
niques, like alliteration and anaphora, are preserved

4(abcdegijkmnqvfhlryutpswozx)
5(abcdefjklnpqxightomuvrswzy)

through the substitution cipher. We could boost allit-
erative n-grams to encourage Beam Verse to include
alliterative n-grams.

As Beam Verse is language agnostic, all of the
work here is applicable to other languages. The
Xenotext constraints might be more easily satisfied
in a different language than English, perhaps a lan-
guage with a smaller character set like Hawaiian
(which only consists of thirteen letters). Addition-
ally, The Xenotext project as defined here only min-
imally uses the organism to actively write – the or-
ganism does not have any degree of freedom to ex-
press itself as its poem is precisely determined by
the author’s poem. However, DNA possesses com-
putational power (Paun et al., 2005), which could be
leveraged to generate natural language. By taking
advantage of the complexity of the cell, its output
could be more loosely defined, and change accord-
ing to mutations in the DNA.

Further investigation can also be done into quanti-
fying the “writability” of a limited vocabulary (per-
haps using semantic and grammar data), and con-
strained text generation under constraint. Poetic en-
deavours with rigid mathematical constraints are not
only attempted by Bök. Any work in the traditions
of the Oulipo, a primarily French-speaking group of
writers who explore the creative potential of mathe-
matical and logical constraints, would stand to ben-
efit immensely from software tools designed to aid
constrained writing. Whereas visual artists and mu-
sicians have been quick to use computers to produce
images and sounds which would have been impossi-
ble by traditional means, writers have been slow to
use computers to produce works which would have
been impossible to create otherwise.

12 Conclusion

In this paper we present a new metric to quantify
“writability” of a symmetric substitution cipher. We
experiment using three different heuristics in a beam
search, an algorithm we call Beam Verse. We find
that our score for “writability”, which takes the min-
imum frequency of a word or n-gram pair, is effec-
tive at finding candidate ciphers, but is not a perfect
metric of “writability” in this constrained environ-
ment. “Writability” is highly subjective, and possi-
bly requires more data than just n-gram frequency

(eg. semantic and grammar information). Luckily,
beam search is highly flexible, and any scoring func-
tion, perhaps using a more sophisticated model of
writability, could be used in place of the one used
here.

Source code and highly scoring ciphers are avail-
able for download6.

References
Christian Bök. 2008. The xenotext experiment.

SCRIPTed, 5:228–231.
Neil A. Campbell and Jane B. Reece. 2008. Biology.

Pearson, 8th edition.
Jonathan PL Cox. 2001. Long-term data storage in dna.

TRENDS in Biotechnology, 19(7):247–250.
Stefan Edelkamp and Stefan Schroedl. 2011. Heuristic

search: theory and applications. Elsevier.
Nick Goldman, Paul Bertone, Siyuan Chen, Christophe

Dessimoz, Emily M LeProust, Botond Sipos, and
Ewan Birney. 2013. Towards practical, high-capacity,
low-maintenance information storage in synthesized
dna. Nature, 494(7435):77–80.

Bradley Hauer, Ryan Hayward, and Grzegorz Kondrak.
2014. Solving substitution ciphers with combined lan-
guage models. pages 2314–2325.

Justine T Kao. 2011. A computational analysis of poetic
craft in contemporary professional and amateur poetry.

Jean-Baptiste Michel, Yuan Kui Shen, Aviva Presser
Aiden, Adrian Veres, Matthew K Gray, Joseph P Pick-
ett, Dale Hoiberg, Dan Clancy, Peter Norvig, and Jon
Orwant. 2011. Quantitative analysis of culture using
millions of digitized books. science, 331(6014):176–
182.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013. Efficient estimation of word representa-
tions in vector space. arXiv preprint arXiv:1301.3781.

Malte Nuhn, Julian Schamper, and Hermann Ney. 2013.
Beam search for solving substitution ciphers. Citeseer.

Gheorghe Paun, Grzegorz Rozenberg, and Arto Salomaa.
2005. DNA computing: new computing paradigms.
Springer Science & Business Media.

Boris Shimanovsky, Jessica Feng, and Miodrag Potkon-
jak. 2002. Hiding data in dna. pages 373–386.
Springer.

Abraham Sinkov. 1966. Elementary cryptanalysis: A
mathematical approach, mathematical association of
america, 1966. Additional Reading.

Darren Wershler. 2012. The xenotext experiment, so far.
Canadian Journal of Communication, 37(1):43.

6http://www.langlearnlab.cs.uvic.ca/beamverse

